SELF EVALUATION QUESTIONS AND ANSWERS

1 A flow control valve is used to control the speed of the actuator as shown in the figure and the characteristics of the system are given in the following table. Determine the variable flow area $A v$, , the pressure downstream of the valve fixed orifice p_{2}, the valve displacement x, and the spring preload F for the given motor operating conditions.

Parameters	Value
Valve flow constant $\left(C_{d}\right)$	0.6
Length h	7.8 mm
Valve area gradient for flow area $\left(A_{v}\right), \mathrm{b}$	$1.25 \mathrm{~mm}^{2} / \mathrm{mm}$
Fixed orifice flow area $\left(A_{0}\right)$	$4.9 \mathrm{~mm}^{2}$
Valve face area	$125 \mathrm{~mm}^{2}$
Spring constant	$57 \mathrm{kN} / \mathrm{m}$
Motor displacement $\left(D_{m}\right)$	$40 \mathrm{~cm}^{3} / \mathrm{rev}$
Motor torque	60 Nm
Motor speed	350 RPM
Motor Volumetric efficiency $\left(\eta_{v}\right)$	96%
Motor mechanical efficiency $\left(\eta_{m}\right)$	975
System pressure $\left(p_{1}\right)$	14.5 MPa
Return pressure $\left(p_{4}\right)$	1 MPa
Fluid density	$840 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$

2 Leakage input flow, $\mathbf{Q}=\mathbf{Q}_{\mathbf{1}}+\mathbf{Q}_{\mathbf{2}}$ passes through the spool valve as shown in the figure. The oil flows past the two spool lands in annular passages as \mathbf{Q}_{1} and \mathbf{Q}_{2}. Write a set of equation, based on conventional fluid flow theory that can be solved for pressure p_{s} and the flow Q_{1} and Q_{2}.

Characteristics of flow division in a spool valve is given below

Spool diameter $d_{s p}$	20 mm
Land length l_{1}	93 mm
Land length l_{2}	73 mm
Spool radial clearance (centered)	0.025 mm

3. Use the equations determined in the problem 2 to solve for numerical values of pressure p_{s} Leakage flow Q_{1} and Q_{2}, when the leakage input flow, $Q=Q_{1}+Q_{2}$ equal to $0.01 \mathrm{~L} / \mathrm{s}$

Q1 solution

Flow from pump divides as Q_{1} and Q_{2}. The pressure drop $P_{1}-P_{2}$ occurs acoss office A_{o} This make valve to move to right against the spring force F. the area of orifice A_{v} then adjusts to control the flow to the motor.
$h=\frac{7.8}{1000} \mathrm{~m}, \mathrm{w}=\frac{1.25}{1000} \mathrm{~mm} . k=57000 \mathrm{~N} / \mathrm{m} \quad A_{o}=4.9 \times 10^{-6} \mathrm{~m}^{2} \quad A=125 \times 10^{-6} \mathrm{~m}^{2}$
$D_{m}=\frac{\frac{40}{100^{3}} \mathrm{~m}^{3}}{\text { rev }}, T=60 \mathrm{Nm} . n=350 \mathrm{RPM} \quad \rho=840 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} P_{1}=14.500 \times 1000 \mathrm{~N} / \mathrm{m}^{2}$
$\eta_{V}=96 \% \eta_{m}=97 \%, P_{4}=1000 \times 1000 \operatorname{Pa} \theta=\frac{2 \times \pi \times 350}{60}=36.652 \mathrm{rad} / \mathrm{s}$
$Q_{2}=\frac{\frac{40}{100^{3}} \mathrm{~m}^{3}}{0.96} \times \frac{350}{60}=2.431 \times 10^{-4} \mathrm{~m}^{3} / \mathrm{s}$
$p_{3}=\frac{T}{0.97} \times \frac{2 \pi}{\frac{40}{100^{3}} m^{3}}+p_{4}=1.072 \times 10^{7} \mathrm{~Pa}$
$Q_{2}=c_{d} A_{o} \sqrt{\frac{2}{840}} \times \sqrt{p_{2}}-p_{1}=2.431 \times \frac{10^{-4} m^{3}}{s}$, solving we get
$p_{2}=1.163 \times 10^{7} \mathrm{~Pa}$
$Q=c_{d} A_{V} \sqrt{\frac{2}{840}} \times \sqrt{p_{2}}-p_{3}=c_{d}(h-x) w \sqrt{\frac{2}{840}} \times \sqrt{p_{2}}-p_{3}$, solving we get
$A_{V}=8.688 \times 10^{-6} \mathrm{~m}^{2}$ or $8.688 \mathrm{~mm}^{2}$
$x=\frac{h \times w-A_{V}}{w}=8.499 \times 10^{-4} \mathrm{~m}$
$p_{1} A=p_{2} A+K X+F$ solving we get $F=310.4 N$

Q2 solution
$Q=\frac{0.01}{1000} L P S, d_{p}=\frac{20}{1000}, l_{1}=\frac{93}{1000}, l_{2}=\frac{73}{1000}, \mu=0.01 \frac{\mathrm{Ns}}{\mathrm{m}^{2}}$
$Q=\frac{0.01}{1000} L P S, d_{p}=\frac{20}{1000}, l_{1}=\frac{93}{1000}, l_{2}=\frac{73}{1000}, \mu=0.01 \frac{\mathrm{Ns}}{\mathrm{m}^{2}}$
$Q_{L}==\frac{\pi D c^{3} \Delta P}{12 \mu L}\left[1+\frac{3}{2}\left(\frac{E}{c}\right)^{3}\right]$
$\left(\frac{\epsilon}{c}\right)=1$
Solving we get
$Q_{1}==\frac{\pi D c^{3} \Delta P}{12 \mu l_{1}}[2.5]$
$Q_{2}==\frac{\pi D c^{3} \Delta P}{12 \mu l_{2}}[2.5]$
$Q=Q_{1}+Q_{2}$

Q3 solution
$Q_{1}==\frac{\pi D c^{3} \Delta P}{12 \mu l_{1}}[2.5]$
$Q_{2}==\frac{\pi D c^{3} \Delta P}{12 \mu l_{2}}[2.5]$
$Q=Q_{1}+Q_{2}$
Use trial values of $Q_{1}=10^{-5}, Q_{2}=10^{-5}$ and $p=10^{5}$
Find $Q_{1}, Q_{2} p=\left\{\begin{array}{c}4.398 \times 10^{-6} \\ 5.602 \times 10^{-6} \\ 2 \times 10^{7}\end{array}\right\}$

$$
Q_{1}=4.398 \times 10^{-6} \frac{\mathrm{~m}^{3}}{\mathrm{~s}}, Q_{2}=5.602 \times 10^{-6} \frac{\mathrm{~m}^{3}}{\mathrm{~s}}, p=2 \times 10^{7} \mathrm{~Pa}
$$

